253 research outputs found

    Organic Anion and Cation Transporter Expression and Function During Embryonic Kidney Development and in Organ Culture Model Systems

    Get PDF
    Background Organic anion and cation transporters (OATs, OCTs and OCTNs) mediate the proximal tubular secretion of numerous clinically important compounds, including various commonly prescribed pharmaceuticals. Here, we examine the ontogeny of these transporters in rat embryonic kidney in detail, both in vivo and in two in vitro organ culture models of kidney development, whole embryonic kidney (WEK) culture and culture of induced metanephric mesenchyme (MM). Methods We used QPCR to determine expression levels of transporter genes in rat embryonic kidneys on each day of gestation from ed13 to ed18, in induced and un-induced MM, and on each day of one week of WEK culture. We also used uptake of fluorescein as a novel functional assay of organic anion transporter expression in WEK and MM. Results The developmental induction of the various organic anion and cation transporter genes does not occur uniformly: some genes are induced early (e.g., Oat1 and Oat3, potential early markers of proximal tubulogenesis), and others not till kidney development is relatively advanced (e.g., Oct1, a potential marker of terminal differentiation). We also find that the ontogeny of transporter genes in WEK and MM is similar to that observed in vivo, indicating that these organ culture systems may appropriately model the expression of OATs, OCTs and OCTNs. Conclusion We show that WEK and MM cultures may represent convenient in vitro models for study of the developmental induction of organic anion and cation transporters. Functional organic anion transport as measured by fluorescein uptake was evident by accumulation of the fluorescence in the developing tubule in these organ cultures. By demonstrating the mediated uptake of fluorescein in WEK and MM, we have established a novel in vitro functional assay of transporter function. We find that OATs, OCTs, and OCTNs are differentially expressed during proximal tubule development. Our findings on the renal ontogeny of organic anion and cation transporters could carry implications both for the development of more rational therapeutics for premature infants, as well as for our understanding of proximal tubule differentiation

    Recommendations for reporting ion mobility Mass Spectrometry measurements

    Get PDF
    Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method‐dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc

    Predictors of rapid cognitive decline in Alzheimer\u27s disease: Results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ageing

    Get PDF
    Background: The AIBL study, which commenced in November 2006, is a two-center prospective study of a cohort of 1112 volunteers aged 60+. The cohort includes 211 patients meeting NINCDS-ADRDA criteria for Alzheimer\u27s disease (AD) (180 probable and 31 possible). We aimed to identify factors associated with rapid cognitive decline over 18 months in this cohort of AD patients. Methods: We defined rapid cognitive decline as a drop of 6 points or more on the Mini-Mental State Examination (MMSE) between baseline and 18-month follow-up. Analyses were also conducted with a threshold of 4, 5, 7 and 8 points, as well as with and without subjects who had died or were too severely affected to be interviewed at 18 months and after, both including and excluding subjects whose AD diagnosis was \u27possible\u27 AD. We sought correlations between rapid cognitive decline and demographic, clinical and biological variables. Results: Of the 211 AD patients recruited at baseline, we had available data for 156 (73.9%) patients at 18 months. Fifty-one patients were considered rapid cognitive decliners (32.7%). A higher Clinical Dementia Rating scale (CDR) and higher CDR \u27sum of boxes\u27 score at baseline were the major predictors of rapid cognitive decline in this population. Furthermore, using logistic regression model analysis, patients treated with a cholinesterase inhibitor (CheI) had a higher risk of being rapid cognitive decliners, as did males and those of younger age. Conclusions: Almost one third of patients satisfying established research criteria for AD experienced rapid cognitive decline. Worse baseline functional and cognitive status and treatment with a CheI were the major factors associated with rapid cognitive decline over 18 months in this population

    Involvement of Laminin Binding Integrins and Laminin-5 in Branching Morphogenesis of the Ureteric Bud during Kidney Development

    Get PDF
    AbstractBranching morphogenesis of the ureteric bud (UB) [induced by the metanephric mesenchyme (MM)] is necessary for normal kidney development. The role of integrins in this complex developmental process is not well understood. However, the recent advent of in vitro model systems to study branching of UB cells and isolated UB tissue makes possible a more detailed analysis of the integrins involved. We detected integrin subunits α3, α6, β1, and β4 in both the UB and cells derived from the early UB. Blocking the function of each of these integrin subunits individually markedly inhibited branching morphogenesis in cell culture models. However, inhibiting individual integrin function with blocking antibodies in whole kidney and isolated UB culture only partially inhibited UB branching morphogenesis, suggesting that, in these more complex in vitro systems, multiple integrins are involved in the branching program. In whole organ and isolated bud culture, marked retardation of UB branching was observed only when both α3 and α6 integrin subunits were inhibited. The α6 integrin subunit can be expressed as both α6β1 and α6β4, and both of these β subunits are important for UB branching morphogenesis in both cell and organ culture. Furthermore, laminin-5, a common ligand for integrins α3β1 and α6β4, was detected in the developing UB and shown to be required for normal UB branching morphogenesis in whole embryonic kidney organ culture as well as isolated UB culture. Together, these data from UB cell culture, organ culture, and isolated UB culture models indicate that both integrin α3 and α6 subunits play a direct role in UB branching morphogenesis, as opposed to being modulators of the inductive effects of mesenchyme on UB development. Furthermore the data are consistent with a role for laminin-5, acting through its α3β1 and/or α6β4 integrin receptors, in UB branching during nephrogenesis. These data may help to partially explain the renal phenotype seen in integrin α3 and α3/α6 subunit-deficient animals

    Perovskite-perovskite tandem photovoltaics with optimized bandgaps

    Full text link
    We demonstrate four and two-terminal perovskite-perovskite tandem solar cells with ideally matched bandgaps. We develop an infrared absorbing 1.2eV bandgap perovskite, FA0.75Cs0.25Sn0.5Pb0.5I3FA_{0.75}Cs_{0.25}Sn_{0.5}Pb_{0.5}I_3, that can deliver 14.8 % efficiency. By combining this material with a wider bandgap FA0.83Cs0.17Pb(I0.5Br0.5)3FA_{0.83}Cs_{0.17}Pb(I_{0.5}Br_{0.5})_3 material, we reach monolithic two terminal tandem efficiencies of 17.0 % with over 1.65 volts open-circuit voltage. We also make mechanically stacked four terminal tandem cells and obtain 20.3 % efficiency. Crucially, we find that our infrared absorbing perovskite cells exhibit excellent thermal and atmospheric stability, unprecedented for Sn based perovskites. This device architecture and materials set will enable 'all perovskite' thin film solar cells to reach the highest efficiencies in the long term at the lowest costs

    The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    Get PDF
    Background: The amyloid β\beta-protein (Aβ\beta) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ\beta is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ\beta has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings: Here, we provide data supporting an in vivo function for Aβ\beta as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ\beta and LL-37, an archetypical human AMP. Findings reveal that Aβ\beta exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ\beta levels. Consistent with Aβ\beta-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ\beta antibodies. Conclusions/Significance: Our findings suggest Aβ\beta is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ\beta-mediated pathology and has important implications for ongoing and future AD treatment strategies

    The Siren Site and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas

    Get PDF
    On behalf of the Texas Department of Transportation (TxDOT), SWCA Environmental Consultants (SWCA) conducted testing and data recovery investigations at the Siren site (41WM1126), a prehistoric multi-component site in the Interstate Highway 35 right-of-way along the South Fork of the San Gabriel River in Williamson County, Texas. The work was done to fulfill TxDOT’s compliance obligations under the National Historic Preservation Act and the Antiquities Code of Texas. The testing investigations were conducted under Antiquities Permit 3834, and the subsequent data recovery was under Permit 3938. Kevin Miller served as Principal Investigator on both permits. Though the site extends far beyond the area of potential effects both horizontally and vertically, the investigations focused on Late Archaic and Late Prehistoric components within a relatively limited area that would be subject to project impacts. The investigations were conducted in February 2006. The investigations identified five isolable components that were intermittently laid down from approximately 2600 to 900 years ago. A substantial Late Prehistoric Austin phase occupation is represented by Scallorn projectile points, stone tools, burned rock, faunal materials, and radiocarbon dates from cooking features. The component feature assemblage includes a cluster of discrete, well-preserved burned rock features that range from small fire-cracked rock concentrations to a large, slab-lined feature that dominates the cluster. The underlying components include four cultural strata representing a series of phases in the final millennium or so of the long Archaic period. These components span approximately 2600 to 1500 b.p., though earlier, deeply buried components were also noted on the site. These deeper deposits were not the focus of the investigations, however, since they would not be affected by the project. The Archaic components revealed a suite of small side-notched dart points such as Ensor, Fairland, and Frio, as well as many earlier broad-bladed styles such as Castroville, Montell, Marshall, and Pedernales. These robust components contained numerous burned rock features of varying size and function, abundant tools, well-preserved faunal materials, macrobotanical remains including geophytes from several earth ovens, and a large suite of radiocarbon dates. The features include an incipient burned rock midden, burned rock clusters, a debitage reduction area, a biface cache, slab-lined hearths, basin-shaped hearths, and small circular hearths. The distributions of artifacts and features within the Archaic components across the excavation blocks showed significant variations. These differences reflect sequential components that provide a view of diachronic trends in technology, subsistence, economy, and a suite of other behaviors and activities during the long transition from Archaic to Late Prehistoric adaptations. As previously determined by the testing excavations and further substantiated by the data recovery investigations, the Siren site, most notably the Late Archaic and Late Prehistoric components, is eligible for the National Register of Historic Places under Criterion D, 36 CFR 60.4, and eligible for State Archeological Landmark designation under Criteria 1 and 2 of the Rules of Practice and Procedure for the Antiquities Code of Texas, 13 TAC 26.8. The excavations and subsequent analysis have mitigated the adverse effects of the bridge construction by recovering the vast majority of the affected components within the area of potential effect. No further archaeological work is recommended. Portions of the site outside the area of potential effects have not been fully evaluated, and any future impacts beyond the mitigated areas warrant further assessment

    Expressed Sequence Tags from Cephalic Chemosensory Organs of the Northern Walnut Husk Fly, Rhagoletis suavis, Including a Putative Canonical Odorant Receptor

    Get PDF
    Rhagoletis fruit flies are important both as major agricultural pests and as model organisms for the study of adaptation to new host plants and host race formation. Response to fruit odor plays a critical role in such adaptation. To better understand olfaction in Rhagoletis, an expressed sequence tag (EST) study was carried out on the antennae and maxillary palps of Rhagoletis suavis (Loew) (Diptera: Tephritidae), a common pest of walnuts in eastern United States. After cDNA cloning and sequencing, 544 ESTs were annotated. Of these, 66% had an open reading frame and could be matched to a previously sequenced gene. Based on BLAST sequence homology, 9% (49 of 544 sequences) were nuclear genes potentially involved in olfaction. The most significant finding is a putative odorant receptor (OR), RSOr1, that is homologous to Drosophila melanogaster Or49a and Or85f. This is the first tephritid OR discovered that might recognize a specific odorant. Other olfactory genes recovered included odorant binding proteins, chemosensory proteins, and putative odorant degrading enzymes

    Relationships between plasma lipids species, gender, risk factors and Alzheimer’s disease

    Get PDF
    Background: Lipid metabolism is altered in Alzheimer’s disease (AD); however, the relationship between AD risk factors (age, APOE ɛ4, and gender) and lipid metabolism is not well defined. Objective: We investigated whether altered lipid metabolism associated with increased age, gender, and APOE status may contribute to the development of AD by examining these risk factors in healthy controls and also clinically diagnosed AD individuals. Methods: We performed plasma lipidomic profiling (582 lipid species) of the Australian Imaging, Biomarkers and Lifestyle flagship study of aging cohort (AIBL) using liquid chromatography-mass spectrometry. Linear regression and interaction analysis were used to explore the relationship between risk factors and plasma lipid species. Results: We observed strong associations between plasma lipid species with gender and increasing age in cognitively normal individuals. However, APOE ɛ4 was relatively weakly associated with plasma lipid species. Interaction analysis identified differential associations of sphingolipids and polyunsaturated fatty acid esterified lipid species with AD based on age and gender, respectively. These data indicate that the risk associated with age, gender, and APOE ɛ4 may, in part, be mediated by changes in lipid metabolism. Conclusion: This study extends our existing knowledge of the relationship between the lipidome and AD and highlights the complexity of the relationships between lipid metabolism and AD at different ages and between men and women. This has important implications for how we assess AD risk and also for potential therapeutic strategies involving modulation of lipid metabolic pathways

    APOE ε2 resilience for Alzheimer’s disease is mediated by plasma lipid species: Analysis of three independent cohort studies

    Get PDF
    Introduction The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer\u27s disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. Methods We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer\u27s Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. Results A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer\u27s disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. Discussion Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer\u27s disease and as such represent a potential therapeutic target
    corecore